a2 United States Patent

Torr et al.

US009060196B2

US 9,060,196 B2
Jun. 16, 2015

(10) Patent No.:
(45) Date of Patent:

(54) CONSTRAINED EXECUTION OF
BACKGROUND APPLICATION CODE ON
MOBILE DEVICES

(75) Inventors: Peter John Torr, Bellevue, WA (US);
Abolade Gbadegesin, Seattle, WA (US);
Shawn P. Burke, Kirkland, WA (US);
Vijayendra Gopalrao Vasu, Redmond,
WA (US); Jason William Fuller,
Bellevue, WA (US); Randal J. Ramig,
Seattle, WA (US); Kunal R. Gandhi,
Redmond, WA (US); Jorge L.
Raastroem, [ssaquah, WA (US); Darin
Miller, Sammamish, WA (US); Alper
Selcuk, Bellevue, WA (US); Timothy
Michael Kurtzman, Redmond, WA
(US); Rachel Jiang, Redmond, WA (US)

(73) Assignee: Microsoft Technology Licensing, LL.C,

Redmond, WA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 13/162,936

(*) Notice:

(22) Filed: Jun. 17,2011
(65) Prior Publication Data
US 2012/0210326 Al Aug. 16,2012

Related U.S. Application Data

(60) Provisional application No. 61/442,753, filed on Feb.
14, 2011, provisional application No. 61/442,701,
filed on Feb. 14, 2011, provisional application No.
61/442,713, filed on Feb. 14, 2011, provisional
application No. 61/442,735, filed on Feb. 14, 2011,
provisional application No. 61/442,740, filed on Feb.

14, 2011.
(51) Imt.ClL
GOG6F 9/46 (2006.01)
HO4N 21/41 (2011.01)
(Continued)
(52) US.CL
CPC ... HO4N 21/4126 (2013.01); HO4N 21/233

(2013.01); HO4N 21/439 (2013.01); HO4N
21/6175 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,655,081 A
5,938,723 A

8/1997 Bonnell et al.
8/1999 Hales et al.

(Continued)

FOREIGN PATENT DOCUMENTS

™ 201030506 A 8/2010
™ 201037506 A 10/2010
OTHER PUBLICATIONS

“i0S Application Programming Guide”, Retrieved at <<http://devel-
oper.apple.com/library/ios/documentation/iphone/ conceptual/
iphoneosprogrammingguide/iPhone AppProgrammingGuide.pdf>>,
Nov. 15, 2010, pp. 114.

(Continued)

Primary Examiner — Camquy Truong

Assistant Examiner — Mehran Kamran

(74) Attorney, Agent, or Firm —Kevin Sullivan; Kate
Drakos; Micky Minhas

(57) ABSTRACT

The subject disclosure is directed towards a technology by
which background application code (e.g., provided by third-
party developers) runs on a mobile device in a way that is
constrained with respect to resource usage. A resource man-
ager processes a resource reservation request for background
code, to determine whether the requested resources meet
constraint criteria for that type of background code. If the
criteria are met and the resources are available, the resources
are reserved, whereby the background code is ensured prior-
ity access to its reserved resources. As a result, a properly
coded background application that executes within its con-
straints will not experience glitches or other problems (e.g.,
unexpected termination) and thereby provide a good user
experience.

20 Claims, 7 Drawing Sheets

US 9,060,196 B2

Page 2
(51) Int.ClL 2011/0035554 Al 2/2011 Watson et al.
HO4N 21/233 (2011.01) 2011/0087989 Al 4/2011 McCann et al.
2011/0151885 Al* 6/2011 Buyukkocetal. 455/452.1
HO4N 21/439 (2011.01) 2011/0202847 Al 82011 Dimitrov
HO04N 21/61 (2011.01) 2011/0252430 Al 10/2011 Chapman et al.
2011/0258323 Al* 10/2011 Jackson 709/226
. 2012/0081308 Al 4/2012 Sirpal
(56) References Cited 2012/0102497 AL* 4/2012 Stahloccoovovrrirrcren 718/103
2012/0102504 Al 4/2012 Iyer etal.
U.S. PATENT DOCUMENTS 2012/0106463 Al* 5/2012 McBride etal. 370/329
2012/0158827 Al 6/2012 Mathews
6,324,411 Bl 11/2001 Genell 2012/0158829 Al 6/2012 Ahmavaara et al.
goaseas B %88‘5‘ g:réct‘zflson 2012/0185532 Al* 7/2012 Kristiansson et al. 709/203
01, ' 2012/0209413 Al 8/2012 Xuetal
7,124,424 B2 10/2006 Gordon et al. 2012/0209946 Al 82012 McClure et al.
;’ 5‘3‘2’332 gé 1%@88? %‘Zfi;; ilt' " 2012/0210266 Al 82012 Jianget al.
et ' 2012/0210321 Al 8/2012 Silvaetal.
IR %88; Eflrllyar wtal 2012/0258722 AL* 10/2012 Litl w.cooorocorccrcrnrne 455/450
Db . ’ 2012/0265874 Al 10/2012 Hohet al.
7,512,952 Bl 3/2009 Liu et al. 2013/0115990 Al 5/2013 Ko et al.
3’233’322 g% ggggg EL?‘ZTZ let al. 2014/0019873 Al 1/2014 Gupta et al.
7 :546:602 B2 6/2009 Hejlsberg et al. OTHER PUBLICATIONS
7,844,972 B2 11/2010 Rajaetal.
7,971,204 B2 6/2011 Jackson Allen, Mitch, “Palm WebOS Rough Cuts”, Retrieved at <<http://
8,082,008 B2 12/2011 Hoffman et al. L
8.175.653 B2 5/2012 Smuga et al. justinput.googlecode.com/files/ Palm_ webOS_ Rough_ Cuts.
8,196,213 B2 6/2012 Klucher et al. pdf>>, Palm webOS, 1st Edition, Sep. 2, 2009, pp. 302. (*PDF of
8,418,186 B2 4/2013 Jackson reference is uploaded in two parts due to file size).
g’g?g’g Alé g% ;ggg %Tarcle(sgl et alt. | Fei, et al., “An Energy-aware Framework for Coordinated Dynamic
8’ 51 5’797 B2 82013 Erancst e(zr:lll ctak Software Management in Mobile Computers”, Retrieved at <<http://
2002/0012329 Al 1/2002 Atkinson et al. www.engr.uconn.eduw/~yfei/publications/files/mascots04.pdf>>,
2002/0104097 Al* 82002 Jerding etal. ... 725/115 Oct. 2004, pp. 12.
2003/0061260 Al* 3/2003 Rajkumar 709/104 Mikic-Rakic, et al., “Middleware for Software Architecture-Based
2003/0117440 Al 6/2003 Hellyar et al. Development in Distributed, Mobile, and Resource-Constrained
%88?‘; 8%3;;2; ﬁ} 12; %88?‘ glotmck etal. Environments”, Retrieved at <<http://sunset.usc.edu/~neno/papers/
an . .
Prism/PrismMW.pdf>>, Feb. 2002, pp. 13.
2004/0194153 Al 9/2004 Garg et al. «] ’ . . Lo,
5005/0022157 Al 1/2005 Brendle et al. Kun.z, et al., “An Arch.ltecture .for Adaptlve.Moblle Appllcatlons. ,
2005/0026654 Al 2/2005 Perez et al. Retrieved at <<http://citeseerx.ist.psu.edu/viewdoc/download?doi=
2005/0120306 Al 6/2005 Klassen et al. 10.1.1.40.624&rep=repl &type=pdf>>, May 13, 1999, pp. 12.
2005/0172326 Al* 82005 Jerdingetal. 725/116 “International Search Report”, Mailed Date: Sep. 26, 2012, Applica-
2005/0278449 Al* 12/2005 Mossetal.cccoevnen.. 709/228 tion No. PCT/US2012/024789, Filed Date: Feb. 12, 2012, pp. 9.
%882;8 é ?252421 ﬁ} ggggg g\foonan et lal. “Windows Phone 7 with multitasking—coming soon”, Retrieved at
5006/0236368 Al* 10/2006 ;j'r:t;te;la ' 796/1 <<http://mobile.dzone.com/articles/windows-phone-7-multitask-
20060243237 Al 112006 Nemyenetal ing>>, Retrieved on Feb. 25, 2011, pp. 2. _
2006/0265726 Al 11/2006 Byun et al. “International Search Report”, Mailed Date: Sep. 17, 2012, Applica-
2006/0288336 Al 12/2006 Trowbridge et al. tion No. PCT/US2012/024790, Filed Date: Feb. 12, 2012, pp. 9.
2007/0036137 Al 2/2007 Horner et al. “BlackBerry Tablet OS SDK for Adobe AIR”, Retrieved at <<http://
%88;; 882232? ﬁ} %; 588; ge}?t"fﬁl et :} docs.blackberry.com/en/developers/deliverables/24 118/
2007/0094665 AL* 4/2007 I N lim tetal 718/104 BlackBerry_Tablet_OS__SDK_ for Adobe_AIR-Development__
2007/0220445 AL 9/2007 Vachotal Guide—1449712-0112050519-001-0.9.2_ Beta-US.pdf>>, Feb. 17,
2007/0223533 Al 9/2007 Kirrmann et al. 2011, pp. 117.
2007/0244586 Al 10/2007 Champion et al. “Running your app in the background (tombstoning)”, Retrieved at
2007/0294699 Al* 12/2007 Bahletal.cccccoenn 718/104 <<http://create. msdn.com/en-US/education/quickstarts/Running
2008/0052717 Al 2/2008 Lee your__App__in_ the_ Background_ (Tombstoning)>>, Retrieved on
2008/0066006 Al 3/2008 Kim Feb. 28, 2011, pp. 7.
2008/0082936 Al % 4/2008 - Helvick “Samsung Galaxy S—Goodbye Task Killer”, Retrieved at <<http://
2008/0125180 Al 5/2008 Hoffmanetal. 455/566
5008/0154601 Al 6/2008 Stifelman ot al. forum._lodafone.co.uldtS/Galaxy_—S/Samsung-Galaxy-S-Goodbye-
2008/0172698 Al* 7/2008 Berger et al. ... 795/50 Task-Killer/m-p/513640>>, Retrieved on Feb. 28, 2011, pp. 5.
2008/0222153 Al 9/2008 Naresh et al. “Windows Phone and multitasking”, Retrieved at <<http://
2009/0028127 Al* 1/2009 Walker et al. oovvvevonn. 370/348 Wind.owsphonesecrets..com/2010/ 05/20/windows-phone-and-
2009/0113444 Al 4/2009 Hackborn et al. multitasking/>>, Retrieved on Feb. 28, 2011, pp. 2.
2009/0227279 Al 9/2009 Yuki et al. “International Search Report”, Mailed Date: Aug. 31, 2012, Appli-
2009/0249247 Al 10/2009 Tseng et al. cation No. PCT/US2012/024024, Filed Date: Feb. 6, 2012, pp. 10.
2009/0300192 Al 12/2009 Northrup Chen, Brian X., “Wired.com Explains: How Mobile Multitasking
2009/0327953 Al N 12/2009 Honkala et al. Works”, Retrieved at <<http://www.wired.com/gadgetlab/2010/07/
%8}8;8?} égjg ﬁ} égg}g Isiclzlclﬁ‘fr etal e 726/27 mobile-multitasking-explainer/>>, Jul. 1, 2010, pp. 5.
2010/0138834 Al 62010 Asarwal et al “Executing Code in the Background”, Retrieved at http://developer.
5010/0153877 Al 6/2010 Ragutava et al ' apple.com/library/ios/#documentation/iphone/ conceptual/
2010/0248787 Al 9/2010 Smuga et al. ' iphoneosprogrammingguide/BackgroundExecution/
2010/0250998 Al 9/2010 Herdrich et al. BackgroupdExecution.html>>, Retr.ieved on Feb. 25,2011, pp. 9.
2010/0262973 Al 10/2010 Ernst et al. “Application Fundamentals”, Retrieved at <<http://developer.an-
2010/0281481 Al 11/2010 Rainisto et al. droid.com/guide/topics/fundamentals.html>>, Retrieved on Feb. 25,
2010/0289760 Al 11/2010 Jonoshita et al. 2011, pp. 7.

US 9,060,196 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

“How Multitasking Works in the New iPhone OS 4.0”, Retrieved at
<<http://gizmodo.com/#5512656/how-multitasking-works-in-the-
new-iphone-0s-40>>, Retrieved on Feb. 25, 2011, pp. 6.

“WP7: Background Execution—Really?”, Retrieved at <<http://
blog jayway.com/2011/01/11/wp7-background-execution-really/
>> Retrieved on Feb. 25, 2011, pp. 8.

“iPhone OS 4.0 Background Services Explained”, Retrieved at
<<http://thecircu.it/news/2010/4/9/iphone-0s-40-background-ser-
vices-explained.html>>, Retrieved on Feb. 25, 2011, pp. 6.
“Multitasking the Android way”, Retrieved at <<http://android-de-
velopers.blogspot.com/2010/04/multitasking-android-way.html>>,
Retrieved on Feb. 25, 2011, pp. 6.

Non-Final Office Action cited in U.S. Appl. No. 13/164,678, dated
Aug. 29, 2013, 9 pages.

“Office Action and Search Report Received for Taiwan Patent Appli-
cation No. 1011022107, Mailed Date: Sep. 3, 2014, 13 Pages.

“Final Office Action Received for U.S. Appl. No.
Mailed Date: Oct. 25, 2013, 22 Pages.

“Non-Final Office Action Received for U.S Appl. No.

Mailed Date: Sep. 11,2014, 20 Pages.
“Non-Final Office Action Received for U.S Appl. No
Mailed Date: Jan. 17, 2013, 22 Pages.

“Non-Final Office Action Received for U.S Appl. No.

Mailed Date: Dec. 20, 2013, 13 Pages.
“Non-Final Office Action Received for U.S Appl. No
Mailed Date: Jun. 24, 2014, 15 Pages.

“Non-Final Office Action Received for U.S Appl. No.

Mailed Date: Jan. 17, 2014, 18 Pages.
“Final Office Action Received for U.S Appl. No.
Mailed Date: Feb. 24, 2014, 10 Pages.
“Non-Final Office Action Received for U.S Appl. No
Mailed Date: Jun. 20, 2014, 11 Pages.

* cited by examiner

13/162,096”,

13/162,096”,

. 13/162,096”,

13/162,459”,

. 13/162,459”,

13/164,497”,

13/164,678”,

.13/164,678”,

U.S. Patent Jun. 16, 2015 Sheet 1 of 7 US 9,060,196 B2

Reguests for
Tasks

)

11774

Layer

Y
. taskList e Applostion | g

stanes
Componail Ly ﬁiii%i

F 3 i

104 e

|

&
Rasnuroes

CPU b

Mamory Hi

h 4
Bournding Boxes g";‘?

P z
NWT 7 Y é Baockground
Bandwidih Aupedic
gk Parodic
Bandwidth

Rasouroe
hanager

. Bystem HForeground
i ———s 3 Hlesseessciiniy

_.S' reen Ll cie edhe Agenie
I > E’i: & 3 2
LDhsplay ® ,

p&ﬁ’;}hﬁ&f{%g A5y 424 5 24
DenAness b g ¢
Senars

FIG. 1

U.S. Patent Jun. 16, 2015 Sheet 2 of 7 US 9,060,196 B2

Start Task Crared Task

Trared

Lok i ; i
Hogt -~ - Mot -

Aotive Canealing
F

Faak Age W
Complsto Oowrsplotes

Baokground
1 Dormant

Laaveh Agpaei? {

FIG. 2

US 9,060,196 B2

Sheet 3 of 7

Jun. 16, 2015

U.S. Patent

£ 9l

it S
fBumssanoid
pursfoen

ary

xog Bumsantid

pnoiBuong aalldy

Gl

BOH N
SAGOBY

~

150H
iy punoifiyoeg
B

PEOPHOM
BRGOEUT SMUBG
WO 150H

[

1804
HE

B34

HAS BRIy

IBINPBYOS B

P

wEghag
gipay

»

89859004

wasAS ISgI0

st

AIYN

Ralihhand

8814

X X

purByeg sy

X0 i By

xog uejsig

(88

U.S. Patent

Jun. 16, 2015

oo 4ah

Sheet 4 of 7

US 9,060,196 B2

Tolabel oo

Apphization

Resource Managsy

Fossreaiions

Tagk List Componeant
Foragroang
Seegion

(57

i

I\;‘i:f&é&zm

Frame Server

 Page
- Stacks

Pages

Background 1H
Seevices |14

Apphcation
instance Manager

Exsculion Mansger

byt Tosk
Frocpuses §

Pt

nstanoss i

Cebepdration Manager

Ao
Prehydrasted

Mosiy i

Liger

Wotkkliows

Backgruasd
Bervices

Foregrourgd

CRU Sohadulary

Muanager

BMemory

o

FIG. 4

U.S. Patent Jun. 16, 2015

Sheet 5 of 7 US 9,060,196 B2

LI A

554

SHE end

Bankground

Aged

Y Systam o {7
{Resource.
Marnagetr 10

U.S. Patent

oo I

Jun. 16, 2015 Sheet 6 of 7

Supesins

Haoslve Roserendion
Reguest

i

£ o .) . , .
TJLook up Prodetenmined Constraing

Limdls for Waorkioad Type

#13

A

i Select Reguesied Resourcs

o s%mss s T
< Raguasied Mesouoe ™,

US 9,060,196 B2

FIG. 6

Altowed for Workload 7
o ¥

yes
#1G _
Reguested ™

o S T Ammm?\
{f any) Avallable and &

within Ll for this
Worklnad

Resouroe

Heservs Type

514

A Anather
Rasouree

&8

Bucoeed
Reaguest

i

18
v [

Fall Reguest

US 9,060,196 B2

Sheet 7 of 7

Jun. 16, 2015

U.S. Patent

594 ~

Ol

96

R
IR

LBl ~ 4

551

o mzf.. {¥e -

{o Fompiainy

E

{51
AL

HHLR
SOV

MYy

*

g 3

| A

14
.
X

3

WY
r..3

3

k. 4

PATIREREEY
NI L NTINNG

ERUENETT
TV AuovEn w w »

k 4 k3

SN

0% uEsn

S
P

I A

WU
254 NOUOH

g

s
&
§
&

[
15
Prrcn
»
g
S
s

\V4

v

GF T SYRIDIN

NOLY Oy

Heinaisan
DNLYHIA()

117 AUGHIN WRIRAR

RS
HAA

.

US 9,060,196 B2

1
CONSTRAINED EXECUTION OF
BACKGROUND APPLICATION CODE ON
MOBILE DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority to U.S. provisional
patent applications Ser. nos. 61/442,701,61/442,713,61/442,
735,61/442,740 and 61/442,753, each filed Feb. 14,2011 and
hereby incorporated by reference. The present application is
related to U.S. patent applications, assigned to the assignee of
the present invention, and hereby incorporated by reference.

BACKGROUND

People want mobile devices to be able to do many things at
once, such as browse the web, play music, notify them of
certain events, and so forth. No single application can prac-
tically accomplish the many possible tasks, so mobile devices
are configured with several distinct applications, as well as
with the ability to download more applications from “third-
party” application vendors (including when the vendor is the
same entity as the “first party” provider of the mobile device).

At present, applications are run separately on mobile
devices, (in contrast to relatively high-powered computing
devices such as PCs where they may be run in parallel). It is
desirable to run applications “at the same time” on mobile
devices as well, in order to give the user a more desirable
experience. This is problematic for a resource-constrained
device such as a mobile device, given its computing power,
limited screen real-estate, battery, network bandwidth, and so
on.

Various approaches have been taken to this in the past. Like
traditional desktop operating systems, some mobile operating
systems simply run the various applications in parallel,
assuming that system has sufficient resources to accomplish
all active tasks and that the user can manage the user experi-
ence (UX, including user interface or UI) issues. This tends to
lead to poor user experiences, as glitches and other problems
occur when resources are not sufficient. Other platforms
allow one or more applications to continue executing even
after the user has switched away from them, but they provide
no guarantees about continuity (quality) of service; e.g., if
resources start to run out, applications are terminated.

SUMMARY

This Summary is provided to introduce a selection of rep-
resentative concepts in a simplified form that are further
described below in the Detailed Description. This Summary
is not intended to identify key features or essential features of
the claimed subject matter, nor is it intended to be used in any
way that would limit the scope of the claimed subject matter.

Briefly, various aspects of the subject matter described
herein are directed towards a technology by which back-
ground code is allowed to run in a resource-constrained way,
with priority given to the background code to use the reserved
resources (e.g., under non-exceptional operating conditions).
Upon receiving a reservation request that requests device
resources for background code, a resource manager deter-
mines whether policy criteria is met for the reservation
request, including that sufficient resources (e.g., CPU and
memory) are available to ensure that the background code is
able to have priority use of the device resources being
requested. If so, the device resources are reserved for use by
the background code. If sufficient resources are not available,

10

15

20

25

30

35

40

45

50

55

60

65

2

the request is failed. In this way, for example, background
code is ensured to run with sufficient resources to avoid
glitches, to not be unexpectedly terminated, and so forth.

The policy criteria generally include constraint limits for a
type of background code corresponding to the reservation
request. For example, a background audio player agent is only
allowed to request allocation of a limited amount of memory
allocation. The policy criteria also generally include data
indicating which resources are allowed and/or denied use by
the background code, e.g., turn-by-turn navigation back-
ground code may use a GPS mechanism as a resource, but
may not use not the screen display.

In one aspect, an application instance manager launches an
instance of the background code for execution when the res-
ervation request is successful. The application instance man-
ager is further configured to manage a lifecycle of the back-
ground code, including moving at least part of the
background code between an active state in which the back-
ground code executes and a dormant state in which the back-
ground code does not execute.

In one aspect, there is described receiving a service request
from an application, the request including a request to reserve
resources for a background agent. A process (e.g., corre-
sponding to the resource manager) determines whether to
reserve the resources for the background agent, and if so,
reserves the resources. The background agent is invoked to
execute code, (e.g., to communicate with a system service to
perform at least one background task, including when the
application is closed). When the background agent and
reserved resources are no longer needed, the resources are
freed and the reservation is relinquished.

Other advantages may become apparent from the follow-
ing detailed description when taken in conjunction with the
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
not limited in the accompanying figures in which like refer-
ence numerals indicate similar elements and in which:

FIG. 1 is a block diagram representing example compo-
nents for managing resources, including providing a con-
strained set of resources to background application code.

FIG. 2 is a block/control flow diagram representing an
example background code lifecycle.

FIG. 3 is a representation of resource bounding boxes for
various workloads (sets of processes).

FIG. 4 is a representation of an example application model
architecture application model including components config-
ured to provide background code execution in a mobile
device.

FIG. 5 is a block/control flow diagram representing
example operations to prepare background code to play back-
ground audio.

FIG. 6 is a flow diagram representing example steps
directed towards providing background code execution in a
mobile device.

FIG. 7 is a block diagram representing an exemplary non-
limiting computing system or operating environment, e.g., in
the example of a mobile phone device, in which one or more
aspects of various embodiments described herein can be
implemented.

DETAILED DESCRIPTION

Various aspects of the technology described herein are
generally directed towards a technology by which back-

US 9,060,196 B2

3

ground application code is configured and allowed to run, but
is constrained by the system with respect to resource usage.
This allows third-party developers to provide code that may
execute as non-foreground code. Example background code
scenarios include background audio playback, periodically
checking into social networking sites, background download
of content for later use in the foreground, scheduling alarms
and notifications, and so forth. Some of these scenarios (e.g.,
background audio playback, social networking check-in,
geo-fencing/geo-caching, and so forth) may operate by hav-
ing application code run in the background.

To this end, there is described a centralized service for
managing the lifetime and execution of background applica-
tion code, along with a resource management system that
protects foreground experiences from background applica-
tion execution, while still enabling background applications
to make execution progress. Also described is a mechanism
that generally guarantees a given experience can be started in
the future, (e.g., providing the system itself is not in an excep-
tional state).

In general, before background application code is allowed
to run, the background application code requests that certain
amounts of resources (e.g., CPU usage and memory) and/or
types of resources (e.g., peripheral devices) be reserved for its
usage. If the requests are within/meet acceptable policy con-
straints for that type of background application code, and the
requested resources are available at that time, the requested
resources are reserved for the background application code,
(otherwise the request is failed). If reserved, the resources are
guaranteed to be available to the background application code
under typical device operation (that is, except for possibly
extraordinary circumstances). In this way, a background
resource is constrained with respect to the resources it may
request and reserve, but if successfully reserved, the
resources will be available if and when needed. As aresult a
background application that is properly coded to execute
within its constraints will not experience glitches or other
problems (e.g., unexpected termination) and thereby provide
a good user experience.

It should be understood that any of the examples herein are
non-limiting. As such, the present invention is not limited to
any particular embodiments, aspects, concepts, structures,
functionalities or examples described herein. Rather, any of
the embodiments, aspects, concepts, structures, functional-
ities or examples described herein are non-limiting, and the
present invention may be used various ways that provide
benefits and advantages in computing and mobile devices in
general.

FIG. 1 is a block diagram showing various components in
one example implementation including an application model
that provides background execution in a mobile device such
as a Windows® phone. To this end, requests 102 related to
application tasks are managed by a task list component 104 of
(e.g., of the system shell) that controls an application resource
manager 106.

In general, the resource manager 106 allocates system
resources 108 such as those shown in blocks 111-116 to the
processes that are hosted on the device. Inaddition to the CPU
111 and memory 112 resources, resources may include net-
work bandwidth 113, disk bandwidth 114 (I/O for any non-
volatile storage type, not necessarily a disk), the screen dis-
play 115, and peripheral devices/sensors 116 such as the
device microphone, the device camera, accelerometer, gyro-
scope, a GPS mechanism and so forth.

Types of processes include system processes, foreground
processes and background agent processes. Processes that
work together to perform functionality are referred to as

10

15

20

25

30

35

40

45

50

55

60

65

4

“workloads” herein, (although it is feasible that a workload
may also comprise a single process). For example, FIG. 1 thus
shows a system workload 120, foreground workload 121 and
background agent workloads 122-124.

Each type of workload 124 is guaranteed an amount of each
resource that is predetermined to be needed relevant by that
process type, generally represented in FIG. 1 as “bounding
boxes” 118. For example, some amount of CPU 111 and
memory 112 are needed by each background workload (or
agent process) and reserved for that workload when initially
requested, or the request is failed if not enough resources are
available. The amount of each resource that is guaranteed (if
not failed) may correspond to a class of the corresponding
application, e.g., a background audio agent may be given so
much memory and CPU, while a different background agent
may be given a different amount of memory and CPU.

The resource manager 106 enforces policies for controlling
access to certain resources (such as the camera or micro-
phone) to prevent them from being accessed by a background
agent, for example. As another example, the foreground
workload 121 gets the screen display resource, which back-
ground processing workloads cannot reserve. Other
resources and additional details regarding resource reserva-
tions are described below.

Thus, components of the application model described
herein include system processes/workloads, foreground
applications/workloads comprising pieces of application
code that comprise the user experience (UX, comprising user
interface components) of the application and may also con-
tain significant business logic needed for presenting that UX.
Components of the application model also include back-
ground agents/workloads, comprising pieces of code that per-
form the actual work of an application (e.g., streaming music,
performing geo-location services, and so on, including after
the foreground application is closed) but generally contain no
visible user interface components. Background agents are
related to, but independent from, the foreground application;
in one implementation, background agents run inside an
agent host (where a host comprises a process that contains one
or more of an application’s task instances).

Resource management-related functions of the task list
component 104 include instantiating an appropriate type of
workload (one or more processes, as described herein), such
as when a session (a user interface workload) is launched or
when a background agent host is created, and deleting a
workload when the hosts in the workload terminate. The task
list component 104 also attaches/detaches workloads to/from
reservations (corresponding to bounding boxes) as workload
states change from active to inactive and vice-versa. The task
list component 104 monitors host creations and adds each
created host to the appropriate workload, monitors host ter-
minations and removes a terminated host from its workload,
and monitors host state changes and changes the state of its
containing workload if needed.

In one implementation, components directed towards
background execution also include an application instance
manager 126 (AIM), comprising a central service that man-
ages the lifetime of background agents/workloads 122-124
and dispatches work to them on behalf of clients. Other com-
ponents directed towards background execution include
background services (such as a media service) that leverage
one or more background agents to perform individual work
items (such as queuing up media to play). System UX is also
provided, such as playback controls or toast notifications,
which enable the user to interact with background agents (and
vice-versa) in a limited fashion.

US 9,060,196 B2

5

The system workload 120 comprises various system pro-
cesses. In one implementation, there is only one instance of
this type. System processes (such as TelShell.exe 440 and
NK.exe 442, FIG. 4 along with ServicesD.exe, and others
belong to this workload, and no hosts do.

Some of the functionality provided by the system workload
120 includes system-provided foreground UI, such as includ-
ing the lock screen, chrome elements (application bar, toasts,
and so forth), incoming phone call experience, alarms and
reminders and so forth. System-provided background audio
playback, comprising a built-in music playback by a media
service (554, FIG. 5, e.g., a Zune® Media Queue), does not
use any hosts for media decoding or playback control. The
system workload 120 may also perform background process-
ing, such as email synchronization, downloading and install-
ing updates and applications, and so forth.

Processes in the system workload 120 often do work on
behalf of processes in other workloads. For example, if the
foreground task instance makes a protected server library
(PSL) method call into TelShell.exe, TelShell.exe will use
resources to execute this PSL. method. Note that the system
does not have the ability to measure resource usage within a
server process and attribute it to a client (or requesting) pro-
cess, and therefore resource usage by such a process is con-
sidered to be part of the system workload itself.

A Ul workload comprises a set of Ul hosts working
together to provide a Ul-based, visual user experience. The
UI pages displayed by a Ul workload form a session, that is,
there is a one-to-one mapping between a Ul workload and a
session. No system processes are included in this type of
workload.

The UI workload that contains the active Ul host is referred
to as the active Ul workload, which is the UI workload that is
currently displaying Ul in the foreground, (e.g., the fore-
ground workload 121). Other Ul workloads are considered to
be inactive. Because there is only one active Ul host at a time,
there is only one active Ul workload at any given time. Some-
times, when the system workload 120 is providing the fore-
ground U, there may be no active Ul workload (e.g., when
the lock screen is displayed). There can be several inactive Ul
workloads at the same time, with the number determined by
the size of the backstack (which is controlled by the Frame
Server component of TelShell, as described in one or more of
the related applications).

One implementation of the application model specifies that
hosts in the active Ul workload successfully finish deactivat-
ing or canceling, in contrast to hosts contained within inactive
UI workloads. A Ul workload terminates when the Ul hosts
within it terminate. A Ul host normally terminates because it
exits after its task instances have completed, or because it is
dehydrated after its task instances have finished deactivating.

Further described herein are components that facilitate
background workload scenarios, including the above-de-
scribed application resource manager 106 that manages
resource consumption by hosts. A background UX workload
comprises background hosts working together to provide a
non-visual user experience, such as background audio play-
back or turn-by-turn directions, playing back a video stream
to an external display while reading email on the phone, (e.g.,
using DLNA/Digital Living Network Alliance technology),
and the like. Note that no system processes need be included
in this type of workload.

The Background UX workload that contains an active
background host is referred to as an active Background UX
workload. Background UX workloads that only contain inac-
tive background hosts are considered to be inactive.

10

15

20

25

30

35

40

45

50

55

60

65

6

Background audio playback using third-party media
decoders and/or playback agents are feasible (and described
in one or more of the related applications). At any given time,
a media service is playing at most one playlist, which is
owned by one application; via policy, at most one media item
from aplaylist can play ata time. Also, the background agents
for a particular playlist are hosted in the same background
host. These constraints, taken together, imply that in such one
implementation, there can be at most one Background UX
workload active at a time. They also imply that each Back-
ground UX workload contains one background host.

FIG. 2 illustrates the lifecycle of a Background UX work-
load. As represented by block 220, launching an agent creates
an active background UX workload, or alternatively activates
an inactive background UX workload. Canceling the agents
in the host (block 222) makes the background UX workload
inactive. When the agents in the host complete, the host may
become dormant (block 224; dormant applications are
described in one or more of the related applications). Hosts in
an inactive Background UX workload are not required to be
allowed to successfully finish canceling.

A background UX workload terminates when the back-
ground hosts within it terminate. A background host normally
terminates only after all its background agents have com-
pleted, when it is told by the application model to exit.

Another type of background workload is a background
processing workload which comprises a set of background
hosts working together to perform some background process-
ing on behalf of an application; (unlike a background UX
workload, a background processing workload does not pro-
vide any user experience, and the user is typically not aware
that this workload exists). Examples of background process-
ing workloads include periodically updating the user’s loca-
tion to a server from the background, downloading media
when the phone screen is off, and the like. Note that no system
processes need be included in a background processing work-
load.

In one implementation, each background processing work-
load contains one background host. The background process-
ing workload that contains an active background host is
referred to as an active background processing workload;
background processing workloads that only contain inactive
background hosts are considered to be inactive.

Multiple applications may register for background pro-
cessing, however one implementation allows at most one
active background processing workload at a time. If multiple
background processing workloads are scheduled to execute at
the same time, it is acceptable to serialize their execution, or
if resources allow it, to execute them in parallel (e.g., which
consumes less battery). Hosts in an inactive background pro-
cessing workload are not requested to successfully finish
canceling; the lifecycle and state transitions of background
processing workloads are similar to those of background UX
workloads.

One other type of workload is an opportunistic workload,
which are not required to have any host successfully complete
its job. Inactive workloads (inactive UI, inactive background
UX and inactive background processing workloads) are
instances of the opportunistic workload type.

As described herein, part of the resource management
strategy is to only support a feature if known in advance that
there are sufficient resources to support implementing the
feature with a proper user experience; a new workload is not
added system if that workload can cause the device itself or
existing workloads to stop working properly. In other words,
support is provided for a particular workload only if it is
known that (in typical cases), the processes of that workload

US 9,060,196 B2

7

have sufficient resources to execute well. An exception to this
is with respect to opportunistic workloads, that is, opportu-
nistic workloads need not run successfully to completion, and
thus sufficient resources need not be ensured.

To this end, “working properly”/“being healthy” with
respect to a workload in may be predetermined in terms of its
canonical resource requirements. For every workload type,
the amount of each resource that a well-written instance of
that workload type needs in order to provide a good user
experience is predetermined, e.g., by analysis. Note that
determining the amount of each resource needed by the sys-
tem workload is given attention, as the system workload can
do work on behalf of other workloads, and thus system pro-
cesses need to account for the amount of resources they need
to service their clients, and include this resource requirement
in their resource requirements.

At run time, if a particular workload is getting at least the
amount of resources needed by its workload type that particu-
lar workload is considered to be healthy. By way of example,
consider that (e.g., via experimentation) that almost all Ul
workloads require at most 75% of the CPU every 16 ms to
work well when active. At run time, as long as the currently
active Ul workload is able to get at least 75% of the CPU
every 16 ms, it is deemed to be healthy (with respect to CPU
usage, that is).

In the event that an ill-behaved workload needs more
resources than it is anticipated for its type, such a workload is
not considered to work correctly within the constraints of the
assigned resource requirements. To avoid interfering with
other workloads, in one implementation, such workloads are
notallocated more resources to attempt to make them healthy.

FIG. 3 shows a conceptual view of workloads and their
bounding boxes, in which shaded boxes represent free
resources. Note that with respect to the block labeled 330,
“Host from Some Inactive Workload,” it is noted that hosts
from inactive workloads are allowed to live only if resources
are free.

Each workload, corresponding to a reservation, may be
considered as being in a bounding box whose size is deter-
mined by the amount of resources its workload type requires
to be healthy; (note that the sizes of the workloads in the
illustrated boxes are not necessarily representative and/or
relative sizes). For example, a background audio workload
needs some amount of memory, some CPU time and so forth
in order to smoothly play audio without glitches or other
interruptions that are noticeable to a user. Conceptually, there
may be a different bounding box for each type of resource that
can be divided up among workloads.

To decide whether to allow a new background workload or
not, the system checks whether the bounding box (e.g., per
resource) of the workload for that scenario fits on the device
or not, based on any other current resource allocations. If it
does, the system allows the scenario; if not, the scenario is not
allowed (the reservation request is failed). Alternatively, the
resource requirements of an existing scenario may be evicted
or revised, so that resources become available for the new
scenario. Negotiation is also feasible, e.g., after denying the
reservation, the reservation request may be resubmitted for
some lesser amount of resources, so that, for example, a
background workload that is written to be able to operate in
some reduced operating mode may do so.

In order to keep the workloads (except the opportunistic
workloads) healthy at run time, the application resource man-
ager ensures that a process has highest priority access to
resources within its own bounding box. In other words, the
application resource manager ensures that for every bounding
box X, aresource request from a process belonging to X will

20

25

35

40

45

8

fail only when any processes not belonging to X have been
evicted from X, and there still are not enough resources to
satisfy the request. Thus, the system workload for example
may use reserved resources, such as for a memory cache,
and/or use more CPU, however the system does not have the
reservation and is coded to understand that the cache may
need to be freed and that it may or may not receive extra CPU.

Note that there is a practical constraint on the general
resource management strategy, in that limiting the processes
of the system workload to a bounding box and failing their
resource requests when this bounding box is full may have
unpredictable results and/or may cause the device to become
unstable. In one implementation, the bounding box of the
system workload is allowed to grow when system processes
need more resources. Such a growth may mean that the
bounding box of some other workload shrinks in size, causing
that workload to become unhealthy, which nevertheless is
more desirable than allowing the system workload (which
provides more significant functionality like a phone call expe-
rience) to become unhealthy. Thus, the resource “guarantee”
made to non-system workloads is subject to exceptions,
including for an extraordinary circumstances such as when
the system workload’s bounding box becomes full and needs
to grow.

FIG. 4 further illustrates additional details of the integra-
tion of the application resource manager 106 into the archi-
tecture of one example implementation of an application
model. In one implementation, the application resource man-
ager 106 comprises a static library that resides in the system
shell’s (TelShell) process 440. The application resource man-
ager 106 operates to maintain reservations, wherein a reser-
vation is essentially equivalent to the bounding box discussed
earlier, and comprises a set of resource quotas. A resource
quota may be in the form of a (resource type, size) tuple,
which describes how much of a resource is reserved for a
reservation. For example, the following reservation contains
two resource quotas/tuples that may be set: {(CPU, 10%
every 5 seconds), (Memory, 10 MB)} which reserves ten
percent of the CPU every five seconds, and ten megabytes of
memory.

When a reservation has a workload associated with it, the
application resource manager 106 operates to ensure that the
processes of the workload have the highest priority access to
the resources of the reservation. Thus, if the active back-
ground UX workload is assigned to the reservation in the
example above, the application resource manager makes sure
that the hosts in the active background UX workload can
collectively use at least 10 MB of memory and 10% of the
CPU every 5 seconds.

A reservation contains one or more resource quotas. A
workload contains one or more hosts. At any given time, a
reservation is associated with one workload. A workload can
be associated with one reservation at a time. Each host is in
one workload at any given time; (technically a host may be in
multiple workloads at the same time, although this may be
disallowed by the model). A host may be in different work-
loads at different times, although, it may not be possible to
move a host from a bigger bounding box to a smaller one,
because some of the resources that it is currently consuming
(like memory), may not be reclaimable.

By way of one example of typical interactions between the
system components described herein, background media
playback is used in an example. Note that the same pattern
generally exists for other scenarios involving background
execution of application code such as location tracking, data
syncing, VoIP calling, turn-by-turn directions, and so on.

US 9,060,196 B2

9

As represented in FIG. 5, consider that a user launches a
foreground application 552 in order to initiate an audio expe-
rience. Using the foreground application 552, the user
chooses the parameters of the desired background experience
(for example, the list of music tracks to play in the back-
ground).

FIG. 5 shows basic blocks and a data/control flow of a
scenario for media playback. Note that as shown, the appli-
cation 552 and agent 558 have their own isolated storage 560,
and the media service has its own data store 562, which may
include a queue. The following labeled steps correspond to
the circled numerals in FI1G. 5:

1. Application creates service request (“play this track and
call me back when you need the next one™)

2. Service asks system to reserve resources for the agent
experience

3. System reserves resources to ensure agent can perform
its work in the future

4. Service starts playing the track

5. User closes application

6. Current track ends

7. Service asks system to call the agent to get the next track

8. System starts new process and invokes the agent

9. Background agent performs logic and provides the next
track information

10. System suspends or kills the agent

11. Current track ends . . . (back to step 5)

12. Playback completes

13. Service notifies system that reservation is no longer
needed

14. System relinquishes reservation.

As can be seen, the foreground application 552 creates the
background service 554 (via an API call) and submits a ser-
vice request to the media playback background service 554,
asking it to perform audio playback on its behalf. The media
playback background service 554 asks the system 556 (the
resource manager 106 of FIGS. 1 and 4) to reserve some
resources for a background agent 558 so that it can be
executed at a future point in time, with a high certainty of
succeeding (note that an exception such as a failure in the
operating system itself may prevent such an execution).
Assuming the reservation is successful, the media playback
background service 554 starts the audio playback experience.

When the media playback background service 554 deter-
mines that it needs the participation of application code in
order to continue providing the experience (e.g., the URL of
the next track to play), the background service submits a work
item to the system 556, (e.g., the application instance man-
ager 126 in FIGS. 1 and 4). The application instance manager
126 attempts to find a suitable agent host in which to run the
background agent 558. If no such host exists, a new one is
created, using the resources previously reserved by the
resource manager 106. Suitable resource constraints such as
amount of memory and CPU that the agent can use are applied
at this time.

A work item is dispatched to the background agent 558,
which carries out the application-specific logic needed to
satisfy it, for example, connecting to a web service 564 to
download the track metadata and supplying that data to the
media playback background service 554.

Once the background agent 558 has completed its work
item, the application instance manager 126 is free to reclaim
its resources as desired (e.g., by suspending its execution or
terminating it completely). However, the agent may still
remain dormant in memory, for example, in case the agent
558 is needed again in the future.

10

15

20

25

30

35

40

45

50

55

60

65

10

If there is more work for the background service 554 to do,
it returns to obtain the participation of application code, as
described above. Otherwise, once the service request has
been satisfied (or the user indicates that the experience is to
stop, either explicitly or implicitly), the resource reservation
is released and the request is considered complete.

Note that at any point in time, the user may return to an
instance of the foreground application 552 and further inter-
act with the background service 554 or with the background
agent 558 itself, either directly or indirectly via system events
and so on. Additionally, the user may use system UX, such as
universal playback controls, in order to influence the back-
ground service (e.g., skip to next track), which in turn may
call into the background agent to fulfill the work item.

By way of summary, FIG. 6 is a flow diagram showing
example steps related to processing a reservation request for
a background workload, beginning at step 602 where the
request is received. Step 604 represents the system looking up
the policy criteria for this type of background workload, e.g.,
which resources are allowed, and of those, what are the limits
(if any) for each resource. For example, a background audio
agent needs some (predetermined reasonable) amount of
memory and some amount of CPU and possibly other
resources, but does not need the screen display. A turn-by-
turn direction background agent needs some memory and
CPU, as well as access to the GPS sensor data, but also does
not need the screen display.

Step 606 selects a resource from the reservation tuple,
which step 608 evaluates to determine whether the requested
resource is allowed for this type of workload. If not, the
process ends at step 618 by failing the request.

If allowed, step 610 evaluates whether the requested
resource amount (if any) is available, and within policy con-
straint limits, e.g., only so much percentage CPU, only so
much memory, and so on. Note that some resources are either
allowed or denied access, e.g., memory is limited, but GPS
data is not (as it is either accessible or not), and thus step 610
does not apply to such resources. Note that it is generally
equivalent to consider resource availability as being part of
whether the policy criteria is met, or as a separate condition
that needs to be met in addition to the policy criteria.

If the requested amount is within any predetermined
allowed amount limit, and is currently available, the resource
is reserved at step 612. If the requested resource is not avail-
able or the predetermined allowed amount (if any) is
exceeded, step 610 branches to step 618 where the process
ends by failing the request.

Step 614 repeats the process for other resources in the
reservation tuple, e.g., evaluating each one in order. When the
requested resources are reserved for a reservation request, the
request succeeds at step 616. At that time, the background
agent may be launched; thereafter it may be denied access to
resources beyond those initially reserved, e.g., in one imple-
mentation, a background agent is not allocated more memory
(if requested while running) beyond that initially reserved.
Exemplary Operating Environment

FIG. 7 illustrates an example of a suitable mobile device
700 on which aspects of the subject matter described herein
may be implemented. The mobile device 700 is only one
example of a device and is not intended to suggest any limi-
tation as to the scope of use or functionality of aspects of the
subject matter described herein. Neither should the mobile
device 700 be interpreted as having any dependency or
requirement relating to any one or combination of compo-
nents illustrated in the exemplary mobile device 700.

With reference to FIG. 7, an exemplary device for imple-
menting aspects of the subject matter described herein

US 9,060,196 B2

11

includes a mobile device 700. In some embodiments, the
mobile device 700 comprises a cell phone, a handheld device
that allows voice communications with others, some other
voice communications device, or the like. In these embodi-
ments, the mobile device 700 may be equipped with a camera
for taking pictures, although this may not be needed in other
embodiments. In other embodiments, the mobile device 700
may comprise a personal digital assistant (PDA), hand-held
gaming device, notebook computer, printer, appliance includ-
ing a set-top, media center, or other appliance, other mobile
devices, or the like. In yet other embodiments, the mobile
device 700 may comprise devices that are generally consid-
ered non-mobile such as personal computers, servers, or the
like.

Components of the mobile device 700 may include, but are
not limited to, a processing unit 705, system memory 710, and
a bus 715 that couples various system components including
the system memory 710 to the processing unit 705. The bus
715 may include any of several types of bus structures includ-
ing a memory bus, memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures, and the
like. The bus 715 allows data to be transmitted between vari-
ous components of the mobile device 700.

The mobile device 700 may include a variety of computer-
readable media. Computer-readable media can be any avail-
able media that can be accessed by the mobile device 700 and
includes both volatile and nonvolatile media, and removable
and non-removable media. By way of example, and not limi-
tation, computer-readable media may comprise computer
storage media and communication media. Computer storage
media includes volatile and nonvolatile, removable and non-
removable media implemented in any method or technology
for storage of information such as computer-readable instruc-
tions, data structures, program modules, or other data. Com-
puter storage media includes, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by the mobile device 700.

Communication media typically embodies computer-read-
able instructions, data structures, program modules, or other
data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such a
manner as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired connec-
tion, and wireless media such as acoustic, RF, Bluetooth®,
Wireless USB, infrared, WiFi, WiMAX, and other wireless
media. Combinations of any of the above should also be
included within the scope of computer-readable media.

The system memory 710 includes computer storage media
in the form of volatile and/or nonvolatile memory and may
include read only memory (ROM) and random access
memory (RAM). On a mobile device such as a cell phone,
operating system code 720 is sometimes included in ROM
although, in other embodiments, this is not required. Simi-
larly, application programs 725 are often placed in RAM
although again, in other embodiments, application programs
may be placed in ROM or in other computer-readable
memory. The heap 730 provides memory for state associated
with the operating system 720 and the application programs
725. For example, the operating system 720 and application

15

30

35

40

45

55

12

programs 725 may store variables and data structures in the
heap 730 during their operations.

The mobile device 700 may also include other removable/
non-removable, volatile/nonvolatile memory. By way of
example, FIG. 7 illustrates a flash card 735, a hard disk drive
736, and a memory stick 737. The hard disk drive 736 may be
miniaturized to fit in a memory slot, for example. The mobile
device 700 may interface with these types of non-volatile
removable memory via a removable memory interface 731, or
may be connected via a universal serial bus (USB), IEEE
7394, one or more of the wired port(s) 740, or antenna(s) 765.
In these embodiments, the removable memory devices 735-
737 may interface with the mobile device via the communi-
cations module(s) 732. In some embodiments, not all of these
types of memory may be included on a single mobile device.
In other embodiments, one or more of these and other types of
removable memory may be included on a single mobile
device.

In some embodiments, the hard disk drive 736 may be
connected in such a way as to be more permanently attached
to the mobile device 700. For example, the hard disk drive 736
may be connected to an interface such as parallel advanced
technology attachment (PATA), serial advanced technology
attachment (SATA) or otherwise, which may be connected to
the bus 715. In such embodiments, removing the hard drive
may involve removing a cover of the mobile device 700 and
removing screws or other fasteners that connect the hard drive
736 to support structures within the mobile device 700.

The removable memory devices 735-737 and their associ-
ated computer storage media, discussed above and illustrated
in FIG. 7, provide storage of computer-readable instructions,
program modules, data structures, and other data for the
mobile device 700. For example, the removable memory
device or devices 735-737 may store images taken by the
mobile device 700, voice recordings, contact information,
programs, data for the programs and so forth.

A user may enter commands and information into the
mobile device 700 through input devices such as a key pad
741 and the microphone 742. In some embodiments, the
display 743 may be touch-sensitive screen and may allow a
user to enter commands and information thereon. The key pad
741 and display 743 may be connected to the processing unit
705 through a user input interface 750 that is coupled to the
bus 715, but may also be connected by other interface and bus
structures, such as the communications module(s) 732 and
wired port(s) 740. Motion detection 752 can be used to deter-
mine gestures made with the device 700.

A user may communicate with other users via speaking
into the microphone 742 and via text messages that are
entered on the key pad 741 or a touch sensitive display 743,
for example. The audio unit 755 may provide electrical sig-
nals to drive the speaker 744 as well as receive and digitize
audio signals received from the microphone 742.

The mobile device 700 may include a video unit 760 that
provides signals to drive a camera 761. The video unit 760
may also receive images obtained by the camera 761 and
provide these images to the processing unit 705 and/or
memory included on the mobile device 700. The images
obtained by the camera 761 may comprise video, one or more
images that do not form a video, or some combination thereof.

The communication module(s) 732 may provide signals to
and receive signals from one or more antenna(s) 765. One of
the antenna(s) 765 may transmit and receive messages for a
cell phone network. Another antenna may transmit and
receive Bluetooth® messages. Yet another antenna (or a
shared antenna) may transmit and receive network messages
via a wireless Ethernet network standard.

US 9,060,196 B2

13

Still further, an antenna provides location-based informa-
tion, e.g., GPS signals to a GPS interface and mechanism 772.
In turn, the GPS mechanism 772 makes available the corre-
sponding GPS data (e.g., time and coordinates) for process-
ing.

In some embodiments, a single antenna may be used to
transmit and/or receive messages for more than one type of
network. For example, a single antenna may transmit and
receive voice and packet messages.

When operated in a networked environment, the mobile
device 700 may connect to one or more remote devices. The
remote devices may include a personal computer, a server, a
router, a network PC, a cell phone, a media playback device,
a peer device or other common network node, and typically
includes many or all of the elements described above relative
to the mobile device 700.

Aspects of the subject matter described herein are opera-
tional with numerous other general purpose or special pur-
pose computing system environments or configurations.
Examples of well known computing systems, environments,
and/or configurations that may be suitable for use with
aspects of the subject matter described herein include, but are
not limited to, personal computers, server computers, hand-
held or laptop devices, multiprocessor systems, microcon-
troller-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputers, mainframe
computers, distributed computing environments that include
any of the above systems or devices, and the like.

Aspects of the subject matter described herein may be
described in the general context of computer-executable
instructions, such as program modules, being executed by a
mobile device. Generally, program modules include routines,
programs, objects, components, data structures, and so forth,
which perform particular tasks or implement particular
abstract data types. Aspects of the subject matter described
herein may also be practiced in distributed computing envi-
ronments where tasks are performed by remote processing
devices that are linked through a communications network. In
a distributed computing environment, program modules may
be located in both local and remote computer storage media
including memory storage devices.

Furthermore, although the term server may be used herein,
it will be recognized that this term may also encompass a
client, a set of one or more processes distributed on one or
more computers, one or more stand-alone storage devices, a
set of one or more other devices, a combination of one or more
of the above, and the like.

Conclusion

While the invention is susceptible to various modifications
and alternative constructions, certain illustrated embodi-
ments thereof are shown in the drawings and have been
described above in detail. It should be understood, however,
that there is no intention to limit the invention to the specific
forms disclosed, but on the contrary, the intention is to cover
all modifications, alternative constructions, and equivalents
falling within the spirit and scope of the invention.

What is claimed is:

1. In a computing environment, a method performed at
least in part on at least one processor, comprising:

receiving, from an application, a reservation request that

requests device resources for background code;
determining prior to scheduling the reservation request
whether policy criteria is met for the reservation request,
including that sufficient resources are available to ensure
that the background code is able to have priority use of
the device resources being requested, wherein said
determining comprises determining for at least some of

20

25

40

45

50

55

14

the device resources whether those requested device
resources are within constraint limits for a type of back-
ground code corresponding to the reservation request,
and if not, failing the reservation request or revising
requirements of the requested device resources;

if the policy criteria is met, reserving the device resources

for use by the background code to allow the background
code to run as background code and use the device
resources, wherein arequest for an additional resource is
denied for the background code while running the back-
ground code; and

managing a lifecycle of the background code, including

launching a background agent corresponding to at least
part of the background code into an active state in which
the background agent executes, and moving the back-
ground agent between an inactive state, in which the
background agent does not execute, and the active state,
wherein the background agent executes the background
code after the application is closed.

2. The method of claim 1 wherein the background agent is
independent from the application.

3. The method of claim 1 wherein receiving the reservation
request comprises receiving a request corresponding to CPU
and memory resource quotas.

4. The method of claim 1 wherein determining whether the
policy criteria is met for the reservation request further com-
prises determining for at least one resource whether that
resource is allowed to be used by the background code.

5. The method of claim 1 further comprising, reserving the
device resources for a system code and a foreground code.

6. The method of claim 1 wherein the policy criteria
include data corresponding to a CPU usage limit or a memory
allocation limit, or both, for the type of background code
associated with the reservation request.

7. The method of claim 1 wherein the policy criteria
include data corresponding to a network bandwidth limit or a
non-volatile storage I/O limit, or both, for the type of back-
ground code associated with the reservation request.

8. The method of claim 1 wherein the resources include at
least one of CPU, memory, network bandwidth, non-volatile
storage bandwidth, a screen display, a device microphone, a
device camera, a device accelerometer, a device gyroscope, a
device GPS mechanism, or any combination of CPU,
memory, network bandwidth, non-volatile storage band-
width, a screen display, a device microphone, a device cam-
era, a device accelerometer, a device gyroscope, or a device
GPS mechanism.

9. In a computing environment, a system comprising:

memory;

at least one processor;

the at least one processor and memory configured to

execute a resource manager, the resource manager con-
figured to constrain resource usage by running back-
ground code, including by evaluating policy criteria and
resource availability against a resource reservation
request, received from an application, to determine
whether to reserve requested resources for the back-
ground code; and if the policy criteria is met and the
resources are available, the resource manager reserving
the resources for the background code and indicating
that the reservation request is successful, and if not, the
resource manager failing the resource reservation
request or revising requirements of the requested
resources; and further wherein the resource manager
denies a request for an additional resource for the back-
ground code while running the background code; and

US 9,060,196 B2

15

an application instance manager configured to manage a
lifecycle of the background code, including launching a
background agent corresponding to at least part of the
background code into an active state in which the back-
ground agent executes, and moving at least part of the
background code between an active state in which the
background code executes and an inactive state in which
the background code does not execute, wherein the
background agent executes the background code after
the application is closed.

10. The system of claim 9 wherein the application instance
manager is further configured to launch an instance of the
background code for execution when the reservation request
is successful.

11. The system of claim 9 wherein the policy criteria
include data corresponding to a CPU usage limit ora memory
allocation limit, or both, for the type of background code
associated with the resource reservation request.

12. The system of claim 9 wherein the policy criteria
include data corresponding to a network bandwidth limit or a
non-volatile storage I/O limit, or both, for the type of back-
ground code associated with the resource reservation request.

13. The system of claim 9 wherein the policy criteria
include data identifying which device resources are allowed
access or denied access, or both, for the type of background
code associated with the resource reservation request.

14. The system of claim 9 wherein the resource manager
reserves resources for system code, foreground code and
background code, the resources including at least one of
CPU, memory, network bandwidth, non-volatile storage
bandwidth, a screen display, a device microphone, a device
camera, a device accelerometer, a device gyroscope, a device
GPS mechanism, or any combination of CPU, memory, net-
work bandwidth, non-volatile storage bandwidth, a screen
display, a device microphone, a device camera, a device
accelerometer, a device gyroscope, a device GPS mechanism.

15. The system of claim 9 wherein the resource manager is
further configured to ensure that the background agent has a
highest priority access to the resources within its own bound-
ing box.

16. One or more computer-readable storage media having
computer-executable instructions, which when executed per-
form steps, comprising:

10

15

20

25

30

35

40

16

receiving, from an application, a reservation request that
requests device resources for background code;

determining prior to scheduling the reservation request
whether policy criteria is met for the reservation request,
including that sufficient resources are available to ensure
that the background code is able to have priority use of
the device resources being requested, wherein said
determining comprises determining for at least some of
the device resources whether those requested device
resources are within constraint limits for a type of back-
ground code corresponding to the reservation request,
and if not, failing the reservation request or revising
requirements of the requested device resources:

if the policy criteria is met, reserving the device resources

for use by the background code to allow the background
code to run as background code and use the device
resources, wherein arequest for an additional resource is
denied for the background code while running the back-
ground code; and

managing a lifecycle of the background code, including

launching a background agent corresponding to at least
part of the background code into an active state in which
the background agent executes, and moving the back-
ground agent between an inactive state, in which the
background agent does not execute, and the active state,
wherein the background agent executes the background
code after the application is closed.

17. The one or more computer-readable storage media of
claim 16 wherein the background agent communicates with a
system service to perform at least one background task.

18. The one or more computer-readable storage media of
claim 16 having further computer-executable instructions
comprising, suspending or terminating the background agent.

19. The one or more computer-readable storage media of
claim 16 wherein determining whether the policy criteria is
met for the reservation request further comprises determining
for at least one resource whether that resource is allowed to be
used by the background code.

20. The one or more computer-readable storage media of
claim 16 wherein the application comprises at least one of a
media playback application, a location tracking application, a
data syncing application, a VoIP calling application, or a
turn-by-turn directions application.

#* #* #* #* #*

